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Abstract. In this note we prove that the set of all uniformly continuous units on a product system over a
C∗ algebra B can be endowed with a structure of left-right B - B Hilbert module after identifying similar
units by the suitable equivalence relation. We use this construction to define the index of the initial product
system, and prove that it is a generalization of earlier defined indices by Arveson (in the case B = C) and
Skeide (in the case of spatial product system). We prove that such defined index is a covariant functor from
the category of continuous product systems to the category of B bimodules. We also prove that the index
is subadditive with respect to the outer tensor product of product systems, and prove additional properties
of the index of product systems that can be embedded into a spatial one.

1. Introduction

Product systems overC have been studied during last several decades in connection with E0-semigroups
acting on a type I factor. Although the main problem of classification of all non isomorphic product systems
is still open, this theory is well developed. The reader is referred to the book [2] and references therein.
In the present century there are some significant results that generalize this theory to product systems
over some C∗-algebra B, either in connection with E0 semigroups (see [13], [3], [15]) or in connection with
quantum probability dynamics (see [7], [4], [14]).

There are many difficulties in generalizing the notion of index of a product system introduced in [1] to
this more general concept. Up to our knowledge there is one attempt in this direction done in [16], using
redefining the notion of tensor product of two product systems in order to retain nice behaviour of index
with respect to tensor product.

The main point of this note is to find the natural generalization of the index of product systems from
Arveson’s C-case to a more general C∗-algebra case. To this purpose we consider the quotient setU/ ∼ of
all uniformly continuous units on the given product system E by a suitable equivalence relation, and prove
thatU/ ∼ carries a natural structure of a two-sided B − Bmodule.

Throughout the whole paper Bwill denote a unital C∗-algebra and 1 will denote its unit. Also, we shall
use ⊗ for tensor product, either algebraic or other, although � is also in common use.

The rest of the introduction is devoted to basic definitions.
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Definition 1.1. a) A product system over C∗-algebra B is a family (Et)t≥0 of Hilbert B − B modules, with E0 � B,
and a family of (unitary) isomorphisms

ϕt,s : Et ⊗ Es → Et+s,

where ⊗ stands for the so-called inner tensor product obtained by identifications ub ⊗ v ∼ u ⊗ bv, u ⊗ vb ∼ (u ⊗ v)b,
bu⊗ v ∼ b(u⊗ v), (u ∈ Et, v ∈ Es, b ∈ B) and then completing in the inner product 〈u ⊗ v,u1 ⊗ v1〉 = 〈v, 〈u,u1〉 v1〉;

b) Unit on E is a family ut ∈ Et, t ≥ 0, so that u0 = 1 and ϕt,s(ut ⊗ us) = ut+s, which we shall abbreviate to
ut ⊗ us = ut+s. A unit ut is unital if 〈ut,ut〉 = 1. It is central if for all b ∈ B and all t ≥ 0 there holds but = utb;

The previous definition does not include any technical condition, such as measurability, or continuity.
It occurs that it is sometimes more convenient to pose the continuity condition directly on units, although
there is a definition of a continuous product system which we shall use in Section 3.

Definition 1.2. Two units ut and vt give rise to the family of mappingsKu,v
t : B → B, given by

K
u,v
t (b) = 〈ut, bvt〉 .

All Ku,v
t are bounded C-linear operators on B, and this family forms a semigroup. We say that the set of units S is

continuous if the corresponding semigroup (Kξ,η
t )ξ,η∈S (with respect to Schur multiplying) is uniformly continuous.

For a single unit ut we say that it is uniformly continuous, or briefly just continuous, if the set {u} is continuous, that
is, the corresponding familyKu,u

t is continuous in the norm of the space L(B).

Given a (uniformly) continuous set of units U, we can form, as it was shown in [4] a uniformly
continuous completely positive definite semigroup (CPD-semigroup further on)K = (Kt)t∈R+

Denote by L = d
dtK |t=0 the generator of CPD-semigroupK . It is well known [4] that L is conditionally

completely positive definite, that is, for all finite n-tuple x1, . . . , xn ∈ U and for all a j, b j ∈ Bwe have

n∑
j=1

a jb j = 0 =⇒

n∑
i, j=1

b∗iL
xi,x j (a∗i a j)b j ≥ 0. (1)

It holds, also, Ly,x(b) = Lx,y(b∗)∗.
Also, K is uniquely determined by L. More precisely, K can be recovered from L by K = etL using

Schur product, i.e.

K
x,y
t (b) =

〈
xt, byt

〉
= (exp tLx,y)(b). (2)

Remark 1.3. We should tell the difference between the continuous set of units and the set of continuous units. In the
second case onlyKξ,ξ

t should be uniformly continuous for ξ ∈ S, whereas in the first case allKξ,η
t should be uniformly

continuous.

In Section 2 we list and prove auxiliary statements that are necessary for the proofs of main results. In
Section 3 we define the notion of the index of a given product system and prove its functoriality from the
category of a continuous product systems to the category of left-right B - B Hilbert modules. Section 4 is
devoted to the outer tensor product of product systems and to the behaviour of the index with respect to it.
In Section 5 we discuss how the existence of a central unit, either in the product system E or in some of its
extensions, affects the index. All examples are left for the last Section 6, as well as concluding remarks.

The proofs in this note requires a technique specific for Hilbert C∗-modules reduced to a few initial
statements. Nevertheless, we refer the reader to books [11] and [8] for elaborate approach to this topic.
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2. Preliminary Results

In [10], Liebscher and Skeide introduce an interesting way to obtain new units in a given product system.
The results are stated in Lemma 3.1, Proposition 3.3 and Lemma 3.4 of the mentioned paper. We briefly
quote them as

Proposition 2.1. a) Suppose that a continuous set S of units generates a product system E. Let t 7→ yt ∈ Et be a
mapping (not necessarily unit), so that for all b ∈ B and some K, Kξ ∈ L(B) (ξ ∈ S) we have〈

yt, byt
〉

= b + tK(b) + O(t2),〈
yt, bξt

〉
= b + tKξ(b) + O(t2).

Then there is a product system F ⊇ E and a unit ζ so that S ∪ {ζ} is continuous and

L
ζ,ζ = K and Lζ,ξ = Kξ.

b) Also, the following three conditions are mutually equivalent:

1. ζ ∈ E;
2. ζ can be obtained as the norm limit of the sequence (yt/n)⊗n;
3. lim

n→∞

〈
ζt, (yt/n)⊗n〉 = 〈ζt, ζt〉.

Remark 2.2. In [10] a more general limit over the filter of all partitions of segment [0, t] instead of limn→∞(yt/n)⊗n

is considered. However, we do not need such a general context.

These results are used, in the same paper, to construct units starting with mappings

t 7→
n∑

j=1

κ jx
j
t , κ j ∈ C,

n∑
j=1

κ j = 1

and

t 7→ xteβt, (3)

where x, x1, . . . , xn
∈ S, β ∈ B, proving, also, that the resulting units, denoted by κ1x1 � · · · � κnxn and xβ,

respectively, belong to S. (Obviously the same unit xβ is obtained if we start with mapping t 7→ eβtxt instead
of (3), since both of them have the same generators Lx,y(b) + β∗b, Lx,x(b) + β∗b + bβ.) It was, also, noted that
the product � is associative unless the expression makes sense. In fact, it holds

κ1x1 � κ2x2 � κ3x3 = (κ1 + κ2)
(
κ1

κ1 + κ2
x1 �

κ2

κ1 + κ2
x2

)
� κ3x3,

provided that κ1 + κ2 , 0, and a similar equality

κ1x1 � κ2x2 � κ3x3 = κ1x1 � (κ2 + κ3)
(
κ2

κ2 + κ3
x2 �

κ3

κ2 + κ3
x3

)
provided that κ2 + κ3 , 0.

The kernels of xβ are given by

L
xβ,xβ = Lx,x + β∗idB + idBβ,

L
xβ,ξ = Lx,ξ + β∗idB.

(4)

For our purpose, however, it is useful to substitute the complex numbers κ j by elements of B. In other
words we have
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Proposition 2.3. Suppose that a continuous set S of units generates a product system E. Let x j
∈ S, let let κ j ∈ B,

j = 1, . . . ,n and let
∑
κ j = 1. Then the functions

t 7→
n∑

j=1

κ jx
j
t and t 7→

n∑
j=1

x j
tκ j

satisfy all assumptions of Proposition 2.1, and the resulting units belong to S. We shall denote them by

κ1x1 � · · · � κnxn and x1κ1 � · · · � xnκn.

Proof. We get the assertion as a special case of the third example in [10, Section 4.2], putting ξk+1 = ξ0,
ak+1 = 1, bk+1 = −1, and either a j = 1 or b j = 1 ( j = 1, 2, . . . , k).

The proof can also be obtained directly by writing down the kernels. In the case n = 2 the mappings

t 7→ x1
tκ1 + x2

tκ2 and t 7→ κ1x1
t + κ2x2

t

lead to the kernels

K = κ∗1L
x1,x1
κ1 + κ∗1L

x1,x2
κ2 + κ∗2L

x2,x1
κ1 + κ∗2L

x2,x2
κ2,

Kξ = κ∗1L
x1,ξ + κ∗2L

x2,ξ

and

K = Lx1,x1
Lκ∗1 Rκ1 +Lx1,x2

Lκ∗1 Rκ2 +Lx2,x1
Lκ∗2 Rκ1 +Lx2,x2

Lκ∗2 Rκ2 ,

Kξ = Lx1,ξLκ∗1 +Lx2,ξLκ∗2 ,

where La,Ra : B → B are the left and right multiplication operators for a ∈ B, and these kernels generate
required units.

We, also, need the following Lemmata.

Lemma 2.4. LetU be the set of all uniformly continuous units on a given product system E, and let x, y ∈ U. If for
all ξ ∈ U there holds Lx,ξ = Ly,ξ then x = y.

Proof. From (2) we obtain

〈xt, bξt〉 =
〈
yt, bξt

〉
.

For b = 1, ξ = x, it becomes 〈xt, xt〉 =
〈
yt, xt

〉
, and for b = 1, ξ = y it becomes

〈
xt, yt

〉
=

〈
yt, yt

〉
. Combining

the last two relations we find
〈
xt − yt, xt − yt

〉
= 0.

Remark 2.5. The assumption ”for all ξ ∈ U” is superfluous in the previous Lemma. We only use the equality for
ξ = x and ξ = y.

Lemma 2.6. Let x be a continuous unit on a product system E. Then x−β/2 is a unital unit, where β = Lx,x(1).
Moreover, if x is central, then x−β/2 is central, as well.

Proof. Since it always holds

L
y,x(b) = (Lx,y(b∗))∗ (5)

we get β = β∗. Further, by (4) we obtain Lx−β/2,x−β/2 (1) = Lx,x(1) − β∗/2 − β/2 = 0, and therefore〈
x−β/2t , x−β/2t

〉
=

(
exp tLx−β/2,x−β/2

)
(1) = 1.

If, in addition, x is central, then

betβ = b 〈xt, xt〉 = 〈xtb∗, xt〉 = 〈xt, xtb〉 = etβb,

which implies that bβ = βb for all b ∈ B. As it is easy to see, x−β/2t = xte−tβ/2 and we conclude that x−β/2 is,
also, central.
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3. Definition of Index

Let E be a product system. We define the index as a quotient of a certain set of continuous units on E
by a suitable inner product. Thus, the index is defined rather as operand on a set of continuous units then
on a product system. However, choosing a reference unit ω, there is a maximal continuous set of unitsUω

that contains ω (in the product system E) - see next Proposition. Therefore we refer the index as ind(E, ω)
and show that it is independent of the choice of ω in the same continuous set of units.

Proposition 3.1. LetU denote the set of all continuous units on a product system E. We define the relation ' onU
by

x ' y⇔ {x, y} is a continuous set.

This relation is an equivalence relation.

Proof. This relation is obviously reflexive and symmetric. We have only to prove that it is transitive, i.e.
that {ξ, η} and {η, ζ} are continuous sets implies that {ξ, ζ} is also a continuous set.

It suffices to prove the uniform continuity of the mapping b 7→ 〈ξt, bζt〉, at t = 0. We begin considering
the difference ξt − ηt. Choosing b = 1 we have〈

ξt − ηt, ξt − ηt
〉

= Kξ,ξ(1) −Kξ,η
t (1) −Kη,ξ

t (1) +K
η,η
t (1)→ 1 − 1 − 1 + 1 = 0.

We also have

〈ξt, bζt〉 =
〈
ξt − ηt, bζt

〉
+

〈
ηt, bζt

〉
.

The second summand is uniformly continuous in b, by continuity of {η, ζ} and, consequently, tends to b (as
t→ 0+), whereas for the first summand the following estimate holds

||
〈
ξt − ηt, bζt

〉
|| ≤ ||ξt − ηt|| ||bζt|| ≤ C||ξt − ηt|| → 0.

(See, also the proof of [4, Lemma 4.4.11].)

Thus, the set U can be decomposed into mutually disjoint collection of maximal continuous sets of
units.

Let E be a product system over a unital C∗-algebra B with at least one continuous unit. (In view of [14,
Definition 4.4] this means that E is non type III product system.) Further, let ω be an arbitrary continuous
unit in E and letU =Uω be the set of all uniformly continuous units that are equivalent to ω.

We define the addition and multiplication by b ∈ B onUω by

x + y = x � y � −ω, b · x = bx � (1 − b)ω, x · b = xb � ω(1 − b). (6)

The kernels of x + y, x · a, a · x are

L
x+y,x+y = Lx,x +Lx,y

− L
x,ω +Ly,x +Ly,y

− L
y,ω
− L

ω,x
− L

ω,y +Lω,ω,

L
x+y,ξ = Lx,ξ +Ly,ξ

− L
ω,ξ,

(7)

L
x·a,x·a = a∗Lx,xa + (1 − a)∗Lω,xa + a∗Lx,ω(1 − a) + (1 − a)∗Lω,ω(1 − a),

L
x·a,ξ = a∗Lx,ξ + (1 − a)∗Lω,ξ, ξ ∈ U,

(8)

L
a·x,a·x = Lx,xLa∗Ra +Lω,xL1−a∗Ra +Lx,ωLa∗R1−a +Lω,ωL1−a∗R1−a,

L
a·x,ξ = Lx,ξLa∗ +Lω,ξL1−a∗ , ξ ∈ U.

(9)

We, also, define an equivalence relation ≈ by: x ≈ y if and only if x = yβ for some β ∈ B.
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Theorem 3.2. a) The setU with respect to operations defined by (6) is a left-right B − B module.
b) The relation ≈ is an equivalence relation and it is compatible with all algebraic operations inU, i.e.

x ≈ y =⇒ x · b ≈ y · b, b · x ≈ b · y,

x1
≈ x2, y1

≈ y2 =⇒ x1 + y1
≈ x2 + y2;

Proof. a) The associativity follows from the associativity of �. In more details, both (x + y) + z and x + (y + z)
are equal to x � y � z � (−2ω).

The neutral element is ω and the inverse is 2ω � (−x) which can be easily checked.
Commutativity is obvious.
The other axioms of left-right B −Bmodule (x · a) · b = x · (ab), a · (b · x) = (ab) · x, a · (x + y) = a · x + a · y,

(x + y) · a = x · a + y · a and 1 · x = x · 1 = x can be easily checked by comparing the kernels.
b) Reflexivity follows choosing β = 0. If x = yβ then Lx,ξ = Ly,ξ + β∗idB, and hence

L
y,ξ = Lx,ξ

− β∗idB = Lx−β,ξ,

from which and from Lemma 2.4 the symmetry follows.
Transitivity. If x = yβ and y = zα then

L
x,ξ = Ly,ξ + β∗idB = Lz,ξ + (α + β)∗idB = Lzα+β,ξ

for any ξ ∈ U. From this and from Lemma 2.4 we conclude that x = zα+β.
Let us now prove that the result of addition and multiplication by b ∈ B does not depend on the choice

of β. Indeed, if x, y ∈ U and x1 = xβ, y1 = yα, for some α, β ∈ B. Then, by (7) and (4)

L
x1+y1,ξ =Lx1,ξ +Ly1,ξ − L

ω,ξ = Lx,ξ + β∗ idB +Ly1,ξ + α∗ idB −Lω,ξ =

=Lx+y,ξ + (α + β)∗ idB = L(x+y)α+β,ξ

for any ξ ∈ U. It follows that, again using Lemma 2.4

x1 + y1 = (x + y)α+β.

Further, let x1 = xβ and let a ∈ B. Then by (8)

L
x1·a,ξ =a∗Lx1,ξ + (1 − a)∗Lω,ξ = a∗(Lx,ξ + β∗ idB) + (1 − a)∗Lω,ξ =

=Lx·a,ξ + a∗β∗ idB = L(x·a)βa,ξ,

for any ξ ∈ U. It follows, once again using Lemma 2.4, that

x1 · a = (x · a)βa.

A similar argument shows that a · x1 = (a · x)aβ.

We can immediately form the quotient module U/ ≈. However, it might not be the accurate choice,
taking into account possible choices of the inner product. Thus, we are looking for the most suitable choice
of a B valued inner product onU. For a while, we shall consider a family of candidates. Namely, for every
positive element b ∈ B there is a map 〈 , 〉b :U ×U −→ B given by

〈x, y〉b = (Lx,y
− L

x,ω
− L

ω,y +Lω,ω)(b), (10)

where ω is the same as in (6).
Any of these mappings isB-valued semi-inner product (in the sense that it can be degenerate, i.e. 〈x, x〉b =

0 need not imply x = 0). Nevertheless, it satisfies all other customary properties.
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Proposition 3.3. The pairing (10) satisfies the following properties:

(a). For all x, y, z ∈ U, and α, β ∈ C 〈x, αy + βz〉b = α〈x, y〉b + β〈x, z〉b;
(b). For all x, y ∈ U, a ∈ B 〈x, y · a〉b = 〈x, y〉ba;
(c). For all x, y ∈ U 〈x, y〉b = 〈y, x〉∗b;
(d). For all x ∈ U 〈x, x〉b ≥ 0;
(e). If x ≈ x′ and y ≈ y′ then

〈
x, y

〉
b =

〈
x′, y′

〉
b;

(f). For all x, y ∈ U, 0 ≤ a ∈ B
〈
x, a · y

〉
1 =

〈
x, y

〉
a;

(g). If 0 ≤ b(∈ B) ≤ 1 then for all x ∈ U we have 〈x, x〉b ≤ 〈x, x〉1.

(h). There holds
〈
x − y, x − y

〉
1 = lim

t→0+

〈
xt − yt, xt − yt

〉
t

.

Proof. (a)-(c) is easy to check. (d) follows, since L is conditionally CPD, precisely we can put n = 2, x1 = x,
x2 = ω, a1 = a2 =

√
b, b1 = 1, b2 = −1 in (1). (e) follows from the cancellation of terms β∗b and bγ in expanded

form of
〈
x′, y′

〉
, where x′ = xβ and y′ = yγ.

To conclude (f), expand
〈
x, a · y

〉
and use (9).

(g) - Since L is conditionally completely positive definite, we get Lx,x(1 − b) −Lx,ω(1 − b) −Lω,x(1 − b) +
L
ω,ω(1 − b) ≥ 0. It follows that 〈x, x〉b ≤ 〈x, x〉1.

(h) follows from (10) and the definition of L after a few cancellations.

Our choice for the inner product will be 〈·, ·〉1, which we shall abbreviate to 〈·, ·〉 further on, i.e. if we
omit the index b we shall assume b = 1. From the properties (b) – (d) of the previous Proposition we can
derive the Cauchy Schwartz inequality (see [8, Proposition 1.1] or [11, Proposition 1.2.4])〈

x, y
〉 〈

x, y
〉∗
≤ 〈x, x〉 ||

〈
y, y

〉
||. (11)

It follows that the set N = {x ∈ U | 〈x, x〉 = 0} is equal to {x ∈ U | ∀y ∈ U,
〈
x, y

〉
= 0} and that it contains

{ωβ | β ∈ B} (property (e)). From this and from (a) – (c) and (f) we conclude that N is a submodule ofU, and
U/N is a pre-Hilbert left right B - Bmodule.

Definition 3.4. Let E be a product system, and let ω be a continuous unit on E. The index of a pair (E, ω) is the
completion of pre-Hilbert left-right moduleU/ ∼, whereU =Uω is the maximal continuous set of units containing
ω, and ∼ is the equivalence relation defined by x ∼ y if and only if x− y ∈ N. Naturally, the index will be denoted by
ind(E, ω).

Remark 3.5. If E can be embedded into a spatial product system, as we shall see in the next section, the completion
is unnecessary.

Remark 3.6. If {ω,ω′} is a continuous set, then ind(E, ω) � ind(E, ω′). Indeed, thenUω = Uω′ and the isometric
isomorphism is given by translation x 7→ x � −ω � ω′

The following definition of a continuous product system [14, Section 7] will allow us to speak of the index
of E without highlighting the unit ω.

Definition 3.7. Continuous product system is a product system (Et)t≥0, together with a family of isometric embed-
dings it : Et → E into a unital Hilbert bimodule, which satisfies

1. For every ys ∈ Es there is a continuous section (xt) ∈ CSi(E) so that ys = xs;
2. For every pair x, y ∈ CSi(E) of continuous sections the function (s, t) 7→ is+t(xs ⊗ yt) is continuous;

where the set of continuous sections (with respect to i) is

CSi(E) = {x = (xt)t≥0 | xt ∈ Et, t 7→ itxt is continuous}.
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By [14, Theorems 7.5 and 7.7] (see also [5, Theorems 2.4 and 2.5]) there is at most one continuous
structure on E that makes a given continuous unit ω a continuous section. Further, given a continuous
unit ω ∈ CSi(E), the set Uω coincides with the set of all continuous units that belong to CSi(E). Indeed,
if a continuous unit x belongs to CSi(E) then ω ' x by [14, Theorem 7.7]. Conversely, if ω ' x and x is a
continuous unit then

||xt+ε − xt|| ≤ ||xt ⊗ xε − xt ⊗ ωε|| + ||xt ⊗ ωε − xt|| ≤ ||xt||(||xε − ωε|| + ||ωε − 1||)→ 0,

as ε→ 0+, because the first summand tends to zero by ω ' x, whereas the second summand tends to zero,
by ω ∈ CSi(E). Left continuity follows from right, since ||xt−ε − xt|| ≤ ||xt−ε|| ||1 − xε||

Thus, for continuous product systems, we shall not underlain the unit ω, i.e. we shall write ind(E).
The class of all continuous product systems is a category, if morphisms are defined as follows.

Definition 3.8. The mapping θ : E → F between two continuous product systems (with embeddings i and j
respectively) is a morphism if:

1. θ|Et is a bounded adjointable B − B linear mappings θt : Et → Ft fulfilling θt+s = θt ⊗ θs and θ0 = idB;
2. Both θ and θ∗ preserve continuous structure, i.e. if (xt)t≥0 ∈ CSi(E) is a continuous section then (θ(xt))t≥0 ∈

CS j(F), and if (yt)t≥0 ∈ CS j(F) then (θ∗(yt))t≥0 ∈ CSi(E);
3. lim sup

t→0+

||θt|| < +∞.

Remark 3.9. In [16, Section 2] morphisms are defined as mappings that satisfy only condition (1) (in previous
Definition). This definition is, however, pure algebraic, and we cannot say anything about continuous structure,
without additional assumptions.

Proposition 3.10. The index is a covariant functor from the category of continuous product systems over B to the
category of all left-right B − B modules.

Proof. Let θ : E → F be a morphism. For a reference unit in UF choose ω′ = θ(ω). For an arbitrary unit
x = (xt) on E, θ(x) = (θt(xt)) is a unit on F since θt+s(xt+s) = θt+s(xt ⊗ xs) = θt(xt) ⊗ θs(xs) and θ0(x0) = 1.
Further, if x is continuous, then x ∈ CSi(E), implying θ(x) ∈ CS j(F), that is θ(x) is continuous.

Using Lemma 2.4 and noting thatLθ(x+y),ξ = Lθ(x)+θ(y),ξ, it follows that θ(x+ y) = θ(x)+θ(y) for x, y ∈ UE.
Similarly, θ(x · a) = θ(x) · a and θ(a · x) = a · θ(x), a ∈ B.

Hence, the mappingUE 3 x 7→ θ(x) ∈ UF is an algebraic homomorphism.
Let θ∗ : F → E denote the morphism whose fibers are θ∗t : Ft → Et, and let x = (xt) be a unit in E. Then

(θ∗tθtxt) is also a unit. Let y ∼ y1 in E, and denote ψt = θ∗tθt. Then, for all x ∈ UE, using Proposition 3.3 ((h)),
we obtain

〈
θx, θy

〉
=

〈
ψx − ψω, y

〉
and hence

〈
θx, θy − θy1

〉
=

〈
ψx − ψω, y − y1

〉
= 0, implying θy ∼ θy1.

Thus, we obtain a well defined homomorphismUE/ ∼3 [x] 7→ ind(θ)([x]) = [θx] ∈ UF/ ∼.
Let us prove that ind(θ) is an adjointable mapping. For any y ∈ UF, θ∗y ∈ UE. Then we have〈

ind(θ)x, y
〉

=Lθx,y(1) − Lθx,ω′ (1) − Lω
′,y(1) +Lω

′,ω′ (1) =

=Lx,θ∗y(1) − Lx,θ∗ω′ (1) − Lω,θ
∗y(1) +Lω,θ

∗ω′ (1) =
〈
x, θ∗y − θ∗ω′

〉
.

This shows that the adjoint of ind(θ) is the mapping (ind(θ))∗(y) = θ∗y − θ∗ω′ (the composition of ind(θ∗)
and translation x 7→ x − θ∗ω′).

Finally, let us prove that ind(θ) is bounded, and, therefore, that it can be extended to ind(E). Using
Proposition 3.3 ((h)) and [8, Proposition1.2] (or [11, Corollary 2.1.6]) we obtain

〈θx, θx〉 = lim
t→0+

〈θtxt − θtωt, θtxt − θtωt〉

t
≤ lim sup

t→0+

||θt||
2 〈xt − ωt, xt − ωt〉

t
≤ (lim sup

t→0+

||θt||
2) 〈x, x〉 .

Hence ind(E) ∈ Ba,bil(ind(E); ind(F)) is a morphism in the category of all left-rightB−Bmodules overB.
It can be easily seen that ind(idE) = idind(E) and ind(ψθ) = ind(ψ)ind(θ) for all morphisms θ between

product systems E and F and ψ between product systems F and G.
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Remark 3.11. The induced mapping ind(θ) preserves the relation≈. Indeed, if x′ = xβ, β ∈ B, thenLθ(x′),ξ = Lθ(x)β,ξ

for ξ ∈ UF and Lemma 2.4 implies that θ(x′) = θ(x)β.

Remark 3.12. If the condition (3) is suppressed, we only can obtain that ind(θ) is densely defined adjointable
(possibly unbounded) operator from ind(E) to ind(F).

Corollary 3.13. Suppose that E and F are algebraically isomorphic product systems (there is a unitary morphism
θ : E→ F). Then ind(E, ω) = ind(F, θ(ω)).

Proof. Fibers ofθ : E→ F are unitary operators, so their norm is equal to 1 and the condition (3) in Definition
3.8 is fulfilled. Further,

〈
θtxt, bθtyt

〉
=

〈
xt, byt

〉
, from which we conclude that θ converts continuous units

into continuous, as well as 〈θx, θx〉 = 〈x, x〉. Therefore, in this case ind(θ) is a unitary operator, implying
ind(E) � ind(F), or more precisely ind(E, ω) = ind(F, θ(ω)).
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4. Subadditivity of the index

Given two product systems, E over a unital C∗-algebraA and F overB, we can consider its (outer) tensor
product E ⊗ F as a product system over A ⊗ B, taking pointwise outer tensor product Et ⊗ Ft as a Hilbert
module over A ⊗ B. (Here A ⊗ B denotes the spatial tensor product of C∗-algebras.) This is the direct
generalization of a tensor product within the category of Arveson product system. On the other hand, it
appears as a product system generated by the action of E0 semigroup α ⊗ β onM⊗N , where α and β are
E0 semigroups on type II1 factorsM andN (see [3]).

It is easy to see that units xt on E, and yt on F give rise to the unit xt ⊗ yt on E ⊗ F. The corresponding
semigroup is (evaluated on elementary tensors)〈

xt ⊗ x′t, (a ⊗ b)(yt ⊗ y′t)
〉

=
〈
xt, ayt

〉
⊗

〈
x′t, by′t

〉
,

and its continuity is obvious. Thus, we have the mappingUE ×UF →UE⊗F. If ω and ω′ are reference units
in ind E and ind F, then it is natural to choose ω ⊗ ω′ to be the reference unit in E ⊗ F.

First, we list some basic properties of x ⊗ y.

Proposition 4.1. Let 1 and 1′ denote the identity elements in A and B. Then for all a ∈ A, b ∈ B, x, y ∈ UE and
x′, y′ ∈ UF there holds:

(a). Lx⊗x′,y⊗y′ (a ⊗ b) = a ⊗ Lx′,y′ (b) +Lx,y(a) ⊗ b - Leibnitz rule;
(b).

〈
x ⊗ x′, y ⊗ y′

〉
= 1⊗

〈
x′, y′

〉
+
〈
x, y

〉
⊗1′, where the inner products are those inUE⊗F,UE andUF, respectively;

(c). (x ⊗ ω′) · (α ⊗ 1′) = (x · α) ⊗ ω′, (ω ⊗ y) · (1 ⊗ β) = ω ⊗ (y · β), where · denotes the multiplying in modules
UE⊗F,UE andUF, respectively;

(d). x ⊗ y = x ⊗ ω′ + ω ⊗ y, where the addition is that in moduleUE⊗F;
(e). (x ⊗ ω′) · (1 ⊗ β) = (1 ⊗ β) · (x ⊗ ω′) and (ω ⊗ y) · (α ⊗ 1′) = (α ⊗ 1′) · (ω ⊗ y);
(f).

〈
x ⊗ ω′, ω ⊗ y

〉
= 0.

Proof. (a) Straightforward calculation;
(b) Follows from (a) and the definition of the inner product;
(c) Using part (a), (8) and (9), after straightforward, but unpleasant calculations we conclude that all

kernels:

L
(x⊗ω′)·(α⊗1′),(x⊗ω′)·(α⊗1′)(a ⊗ b) L

(x⊗ω′)·(α⊗1′),x·α⊗ω′ (a ⊗ b)

L
x·α⊗ω′,(x⊗ω′)·(α⊗1′)(a ⊗ b) L

x·α⊗ω′,x·α⊗ω′ (a ⊗ b)

are equal to

a ⊗ Lω
′,ω′ (b) + (α∗Lx,x(a)α + α∗Lx,ω(a)(1 − α) + (1 − α∗)Lω,x(a)α + (1 − α∗)Lω,ω(a)(1 − α)) ⊗ b.

By this, Lemma 2.4 and Remark 2.5 we conclude the first equality. The second follows similarly.
(d) After a few steps we get

L
x⊗ω′+ω⊗y,x⊗ω′+ω⊗y(a⊗b) = Lx⊗ω′+ω⊗y,x⊗y(a⊗b) = Lx⊗y,x⊗ω′+ω⊗y(a⊗b) = Lx⊗y,x⊗y(a⊗b) = a⊗Ly,y(b)+Lx,x(a)⊗b;

(e) Once again, using part (a), (8) and (9) we conclude that all kernels

L
(x⊗ω′)·(1⊗β),(x⊗ω′)·(1⊗β)(a ⊗ b) L

(x⊗ω′)·(1⊗β),(1⊗β)·(x⊗ω′)(a ⊗ b)

L
(1⊗β)·(x⊗ω′),(x⊗ω′)·(1⊗β)(a ⊗ b) L

(1⊗β)·(x⊗ω′),(1⊗β)·(x⊗ω′)(a ⊗ b)

are equal to

a ⊗ Lω
′,ω′ (b) +Lx,x(a) ⊗ β∗bβ +Lω,x(a) ⊗ (1′ − β∗)bβ +Lx,ω(a) ⊗ β∗b(1′ − β) +Lω,ω(a) ⊗ (1′ − β∗)b(1 − β);

(f) Follows easily from (b).
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Remark 4.2. Note that, in general, (x ⊗ y) · (α ⊗ β) , (x · α) ⊗ (y · β), so that ind(E ⊗ F) cannot be considered as a
tensor product of ind E and ind F.

Proposition 4.3. The mapping T : (ind(E) ⊗ B) ⊕ (A ⊗ ind(F)) → ind(E ⊗ F) defined on the elementary tensors
from the dense subset ((UE/ ∼) ⊗ B) ⊕ (A⊗ (UF/ ∼)) by

T([x] ⊗ β, α ⊗ [y]) = [(x ⊗ ω′) · (1 ⊗ β) + (α ⊗ 1′) · (ω ⊗ y)]

is a module homomorphism and isometric embedding.

Proof. First, taking into account Proposition 4.1 (parts (f) and (b)), for z = (x ⊗ω′) · (1 ⊗ β) + (α ⊗ 1′) · (ω ⊗ y)
we obtain

〈z, z〉 = 〈x, x〉 ⊗ β∗β + α∗α ⊗
〈
y, y

〉
=

〈
(x ⊗ β, α ⊗ y), (x ⊗ β, α ⊗ y)

〉
. (12)

Hence, we get that T is well defined. Indeed, if x ∼ x1 then (x ⊗ ω′) · (1 ⊗ β) ∼ (x1 ⊗ ω′) · (1 ⊗ β), since their
difference multiplied by itself is equal to zero. Similarly for y ∼ y1.

Additivity is obvious.
For the right multiplication, using Proposition 4.1 (parts (c) and (e)), we get

T(([x] ⊗ β, α ⊗ [y]) · (a ⊗ b)) =T([x · a] ⊗ βb, αa ⊗ [y · b]) =

=[(x ⊗ ω′) · (a ⊗ βb) + (ω ⊗ y) · (αa ⊗ b)] =

=T([x] ⊗ β, α ⊗ [y]) · (a ⊗ b),

and similarly for the left multiplication.
Finally, from (12) it follows that T is an isometry, and hence embedding.

Remark 4.4. In Arveson case, i.e. in the caseA = B = C, the above embedding is actually an isomorphism, due to
[2, Theorem 3.7.2 and Corollary 3.7.3] which asserts that any unit w in E ⊗ F has the form w = u ⊗ v for some units
u in E, and v in F. However, almost every substantial step in the proof of these statements fails in a general situation.
Therefore, it should find either entirely different proof, or a suitable counterexample.
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5. (Sub)spatial Product Systems

In this section we prove that the index of a spatial or a subspatial product system can be described more
precisely. In more details, the relations ∼ and ≈ coincide,U can be recovered from ind(E) asU � B⊕ ind(E),
and finally, completion in the Definition 3.4 is not necessary. Some of these properties can be obtained
using the fact that any spatial product system contains a subsystem isomorphic to a time ordered Fock
module [16, Theorem 6.3]. However, the proofs presented here are independent of this characterization,
and henceforth they don’t use Kolmogorov decomposition of completely positive definite kernels.

We begin with the definition of the spatial [16, Section 2] and subspatial product system.

Definition 5.1. The spatial product system is a product system that contains a central unital unit. The system is
subspatial if it can be embedded into a spatial one.

Remark 5.2. Recall that unit ω is central if and only if bωt = ωtb for all b ∈ B and all t ≥ 0. Such a unit might not
exist (see [4, Example 4.2.4]). However, its nice behaviour allows to obtain plenty of interesting results.

In view of Lemma 2.6, it is enough to assume that E admits a central continuous unit, instead of assuming that it
admits a central unital unit.

Note, also, that subspatial system might not be spatial (see [5, Section 3]). The converse is trivially satisfied.

Throughout this section, the reference unit ω is always assumed to be central and we shall assume that
it is specified, even though it is not emphasized.

The following Lemma establishes the most important property of central units. Although it is very
simple and seen in many papers, we give its proof for the convenience of the reader.

Lemma 5.3. If a unit ω is central then for all b ∈ B and all x ∈ U

L
x,ω(b) = Lx,ω(1)b. (13)

Then, also Lω,x(b) = bLω,x(1).

Proof. If ω is central, we have

L
x,ω(b) = lim

t→0+

〈xt, bωt〉 − b
t

= lim
t→0+

〈xt, ωt〉 − 1
t

b = Lx,ω(1)b.

The next Proposition allows us to translate the statements proved for spatial product systems to sub-
spatial.

Proposition 5.4. Let E be a subspatial product system embedded into a spatial system Ê with a central unit ω̂, and
let ω be an arbitrary unit on E. Then the mapping

Φ :UE → {x − ω | x ∈ UE} ⊆ UÊ, Φ(x) = x − ω,

is an embedding, where the substraction is that inUÊ, i.e. Φ(x) = x − ω = x � ω̂ � (−ω).
In other words,UE is an affine subspace ofUÊ.

Proof. Indeed,

Φ(x + y) = Φ(x � y � (−ω)) = x � y � (−ω) � ω̂ � (−ω) =

= (x � ω̂ � (−ω)) � (y � ω̂ � (−ω)) � (−ω̂) = Φ(x) + Φ(y)

and also

Φ(x · a) = Φ(xa � ω(1 − a)) = (xa � ω(1 − a)) � ω̂ � (−ω) = (x � ω̂ � (−ω))a � ω̂(1 − a) = Φ(x) · a

and similarly for Φ(a · x). Finally, we easily find that
〈
Φ(x),Φ(y)

〉
=

〈
x, y

〉
.
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The following Proposition establishes that the relations ≈ and ∼ coincide.

Proposition 5.5. Let E be a subspatial product system. Then the equivalence relation ∼ from Definition 3.4 is
characterized as follows:

x ∼ y⇐⇒ x = yβ, for some β ∈ B.

Proof. Let us, first, assume that E is spatial, and that ω is its central unit. Since both relations ≈ and ∼ are
compatible with algebraic operations and x + ωβ = xβ, it suffices to prove that 〈x, x〉 = 0 implies x ≈ ω, i.e.
xβ = ω for some β ∈ B.

Let 〈x, x〉1 = 0, let b ∈ B, b ≥ 0 and let denote b̃ = b/‖b‖. The element b̃ is positive and 1 − b̃ ≥ 0. By
Proposition 3.3 ((g)) we have

〈x, x〉b̃ ≤ 〈x, x〉 , (14)

and hence 〈x, x〉b̃ = 0.
¿From Cauchy Schwartz inequality (11), we have 〈x, y〉b̃ = 0 for all y ∈ U. Let β = Lω,ω(1) −Lω,x(1) ∈ B.

Then Lxβ,y(b̃) = Lx,y(b̃) + β∗b̃ = Lω,y(b̃) and hence Lxβ,y(b) = Lω,y(b). Since every element in B is a linear
combination of at most four positive elements, we get Lxβ,y = Lω,y. Using Lemma 2.4, we conclude xβ = ω.

Let, now, E be a subspatial product system. Then it can be embedded in a spatial system Ê that contains
a central unit ω̂. If x ∼ y, then, obviously, x − ω ∼ y − ω, and by previous part, x − ω = (y − ω)β for some
β ∈ B, which is equal to yβ − ω by Theorem 3.2. Hence x = yβ.

Theorem 5.6. If E is subspatial product system, thenU/∼ is a Hilbert left-right B - B-module.

Proof. We, only, have to prove thatU/ ∼ is norm complete. First, assume that E is spatial.
Let ([xn]) be a Cauchy sequence inU/∼, that is: for all 0 < ε ≤ 1 there is n0 ∈N such that

‖〈xn
− xm, xn

− xm
〉1‖ = ‖[xn] − [xm]‖2 < ε2 for m,n ≥ n0. (15)

We would like to show that ([xn]) is convergent. This sequence is, of course, bounded. First, we prove that
the sequence 〈xn, xn

〉b̃ is also a Cauchy sequence, where b̃ = b/‖b‖, and b ≥ 0 is arbitrary. For m,n ≥ n0, we
have by (14),

‖〈xn, xn
〉b̃ − 〈x

m, xm
〉b̃‖ ≤ ‖〈x

n
− xm, xn

− xm
〉b̃‖ + ‖〈xn

− xm, xm
〉b̃‖ + ‖〈xm, xn

− xm
〉b̃‖ ≤

≤ ‖〈xn
− xm, xn

− xm
〉1‖ + 2

√
‖〈xn − xm, xn − xm〉1‖

√
‖〈xm, xm〉1‖ < ε

2 + 2ε
√
‖〈xm, xm〉1‖ < ε const. (16)

The unit xn is an arbitrary representative of the class [xn], and now we are going to pick the most suitable
one. Let βn = −Lω,x

n
(1) ∈ B, and let xβn denote the unit (xn)βn . By (13) we have Lξ,ω(b) = Lξ,ω(1)b. This

ensures that

L
ω,xβn (b̃) = (Lxβn ,ω(b̃))∗ = (Lxn,ω(1) + (βn)∗)b̃ = 0,

for n ∈N. Now we obtain

L
xβn ,xβn (b̃) − Lxβm ,xβm (b̃) = 〈xβn , xβn〉b̃ − 〈x

βm , xβm〉b̃ = 〈xn, xn
〉b̃ − 〈x

m, xm
〉b̃.

It follows, by (16),

‖(Lxβn ,xβn
− L

xβm ,xβm )(b)‖ < ε const‖b‖, (17)

for any b ≥ 0. Since every element of B is a linear combination of at most four positive elements, we
conclude that Lxβn ,xβn is a Cauchy sequence in L(B), multiplying the constant in (17) by 4, if necessary.
Hence it converges.
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For every y ∈ U, we have

〈y, xn
− xm
〉b̃〈x

n
− xm, y〉b̃ ≤ ‖〈x

n
− xm, xn

− xm
〉b̃‖〈y, y〉b̃.

By (14) and (15), ‖〈xn
− xm, y〉b̃‖ < ε

√
‖〈y, y〉1‖, implying

‖(Lxβn ,y
− L

xβm ,y)(b)‖ < ε
√
‖〈y, y〉1‖‖b‖, (18)

for all B 3 b ≥ 0. As above, we conclude that Lxβn ,y is a Cauchy sequence in L(B), and hence convergent.
Moreover, it satisfies the Cauchy condition uniformly with respect to y, ‖

〈
y, y

〉
1 ‖ ≤ 1.

Therefore, we proved that there are K, Ky ∈ L(B) so that

lim
n→+∞

‖L
xβn ,xβn

− K‖ = 0, (19)

lim
n→+∞

‖L
xβn ,y
− Ky‖ = 0. (20)

Since ‖Lxβn ,xβn
‖, ‖Lxβn ,y

‖ ≤ const, for n ∈N and ||
〈
y, y

〉
1 || ≤ 1, the series

+∞∑
m=0

tm(Lxβn ,xβn )m

m!
and

+∞∑
m=0

tm(Lxβn ,y)m

m!

uniformly converge with respect to n ∈N, which by Lebesgue dominant convergence theorem implies

lim
n→+∞

〈xβn
t , •x

βn
t 〉 = lim

n→+∞
etLxβn ,xβn

= lim
n→+∞

+∞∑
m=0

tm(Lxβn ,xβn )m

m!
= etK,

lim
n→+∞

〈xβn
t , •yt〉 = lim

n→+∞
etLxβn ,y

= lim
n→+∞

+∞∑
m=0

tm(Lxβn ,y)m

m!
= etKy .

So,

lim
n→+∞

〈xβn
t , •x

βn
t 〉 = idB + tK + O(t2), (21)

lim
n→+∞

〈xβn
t , •yt〉 = idB + tKy + O(t2). (22)

Thus, we found the kernels of the desired limit of our Cauchy sequence. We can immediately apply
Proposition 2.1 to bring up the unit ut with kernels K, Ky. However, it is disputable whether or not, this unit
satisfies one of conditions of Proposition 2.1, and therefore, whether or not it belongs toU. So, we need to
find another way to obtain ut.

Let ε > 0. Since limits lim
n→+∞

〈xβn
t , x

βn
t 〉 and lim

n→+∞
〈xβn

t , yt〉 exist in B, uniformly in y, ‖〈y, y〉1‖ ≤ 1, there are
n1,n2 ∈N so that

‖〈xβn
t , x

βn
t 〉 − 〈x

βn1
t , x

βn1
t 〉‖ <

ε
2

for n ≥ n1, (23)

‖〈xβn
t , yt〉 − 〈x

βn2
t , yt〉‖ <

ε
2

for n ≥ n2. (24)

Let n0 = max{n1,n2} and m,n ≥ n0. We have, by (23) and (24)

‖xβn
t − xβm

t ‖
2
Et

=‖〈xβn
t − xβm

t , x
βn
t − xβm

t 〉‖B =

=‖〈xβn
t , x

βn
t 〉 − 〈x

βm
t , x

βm
t 〉 + 〈x

βm
t , x

βm
t − xβn

t 〉 + 〈x
βm
t − xβn

t , x
βm
t 〉‖ ≤

≤‖〈xβn
t , x

βn
t 〉 − 〈x

βn0
t , x

βn0
t 〉‖ + ‖〈xβm

t , x
βm
t 〉 − 〈x

βn0
t , x

βn0
t 〉‖+

+ 2‖〈xβm
t , x

βm
t 〉 − 〈x

βn0
t , x

βn0
t 〉‖ + 2‖〈x

βn0
t , x

βn0
t 〉 − 〈x

βn0
t , xβn

t 〉‖+

+ 2‖〈xβm
t , x

βn
t 〉 − 〈x

βn0
t , xβn

t 〉‖ < 8ε,
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It follows that (xβn
t ) is convergent in Hilbert B − Bmodule Et. Its limit we denote by

lim
n→+∞

xβn
t = ut ∈ Et. (25)

By (21) and (22), we get

〈ut, •ut〉 = idB + tK + O(t2),

〈ut, •yt〉 = idB + tKy + O(t2).

To conclude that ut is unit, we only need to apply limit (as n→∞) to relation

xβn
t ⊗ xβn

s = xβn
s+t.

From (19) and (20) we find that

lim
n→+∞

‖〈xβn − u, xβn − u〉1‖ = 0,

i.e.

lim
n→+∞

[xn] = [u],

inU/∼. ThereforeU/∼ is a Hilbert B-module.
If E is only subspatial, we can embed it into a spatial system Ê with central unit ω. We can apply the

previous case. The only question is whether the limit unit belongs to E ≤ Ê. However it immediately
follows from (25).

Proposition 5.7. If E is a subspatial product system, thenU is (algebraically) isomorphic to ind(E) ⊕ B as right B
module. If E is, in addition, spatial, thenU is isomorphic to ind(E) ⊕ B as left-right B − B module.

Proof. We can assume that ω is unital, since the index does not depend on ω.
By the previous Theorem and Proposition, we have a short exact sequence of Hilbert modules.

0→ B i
↪→U

π
→ ind(E)→ 0

where i(β) = ωβ, and π is the canonical projections. We shall show that this sequence splits, constructing
the homomorphism j :U → B by

j(x) = Lx,ω(1)∗ = Lω,x(1).

This mapping satisfies

j(x + y) = (Lx,ω(1) +Ly,ω(1) − Lω,ω(1))∗ = j(x) + j(y),

j(x · a) = (a∗Lx,ω(1) + (1 − a∗)Lω,ω(1))∗ = j(x)a,

since ω is unital, implying Lω,ω(1) = 0.
If, in addition, ω is central, then

j(a · x) = (Lx,ω(a∗) +Lω,ω(1 − a∗))∗ = (Lx,ω(1)a∗)∗ = aj(x),

since for central unital unit ω there holds Lx,ω(a) = Lx,ω(1)a (Lemma 5.3).
To finish the proof, note that j ◦ i(β) = j(ωβ) = β.

The following Corollary was proved in [4, Theorem 3.5.2] under additional assumption that B is a von
Neumann algebra and in full generality in [14, Theorem 5.2]. Here, we give an easy proof that does not use
Kolmogorov decomposition of completely positive definite kernels.
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Corollary 5.8. Let x be a continuous unit on a product system E over B. If E can be embedded in some spatial
product system, then the generator of CPD semigroup 〈xt, bxt〉 has the Christensen-Evans form, that is

L
x,x(b) = 〈ζx, bζx〉 + β

∗

xb + bβx,

where ζx is element of some Hilbert left-right B − B module, and βx ∈ B.
Moreover, the generator of

〈
xt, byt

〉
has the form

L
x,y(b) =

〈
ζx, bζy

〉
+ β∗xb + bβy.

Proof. Let E ≤ Ê and let ω be a central unital unit in Ê. A straightforward calculation gives〈
x, b · y

〉
= Lx,y(b) − Lx,ω(b) − Lω,y(b) +Lω,ω(b).

Using the fact that ω is central and unital, we get

L
x,ω(b) = Lx,ω(1)b = j(x)∗b, L

ω,y(b) = bLω,y(1) = bj(y) and L
ω,ω(b) = 0,

where j is the mapping from Proposition 5.7. Thus we obtain

L
x,y(b) =

〈
x, b · y

〉
+ j(x)∗b + bj(y) =

〈
[x], b[y]

〉
+ j(x)∗b + bj(y),

which finishes the proof.
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6. Examples, Remarks

Following two Examples demonstrate that ind(E) defined in this note is a generalization of the notion of
the index defined by Arveson in the case B = C in [1], and by Skeide in the case when E is a spatial product
system [16].

Example 6.1. Let E be an Arveson product system, i.e. a product system over C. ThenU/∼ is isomorphic to a vector
space of dimension ind(E). Indeed, as any Arveson product system contains a unique maximal type I subsystem of
the same index (namely, the system generated by its units), we may assume that E is generated by a continuous set of
units. By [2, Theorem 6.7.1] and [2, Proposition 3.1.5], E is isomorphic to the concrete product system of the CCR
flow of rank n = ind(E), acting on B(eL2((0,∞),K)) where K is a Hilbert space of dimension n. By [2, Theorem 2.6.4],
U/∼ = {[Uζ], ζ ∈ K}, where Uζ are units defined by Uζ

t (exp( f )) = exp(χ(0,t) ⊗ ζ + St f ), t ≥ 0, f ∈ L2((0,∞); K),
and (St) is the shift semigroup of index n that acts on L2((0,∞); K) by way of

St f (x) =

 f (x − t), x > t
0, 0 < x ≤ t.

Taking the unit U0 for ω we see that
〈
[Uζ], [Uη]

〉
=

〈
Uζ,Uη

〉
=

〈
ζ, η

〉
. Noting that〈

[Uζ+η] − [Uζ + Uη], [Uζ+η] − [Uζ + Uη]
〉

= 0

and 〈
[Uaζ] − [aUζ], [Uaζ] − [aUζ]

〉
= 0,

for a ∈ C, we obtain that [Uζ+η] = [Uζ + Uη] and [Uaζ] = [aUζ]. Hence, K 3 ζ 7→ [Uζ] ∈ U/∼ is an isomorphism.
Since the dimension of vector space completely determines it (up to isomorphism), it allows us to consider the

B-module ind(E) as a suitable generalization of the index.

Example 6.2. Let IΓ(F) be the time ordered Fock module where F is a two sided Hilbert module over B. In [9,
Theorems 3 and 6] it was proved that all continuous units in IΓ(F) can be parameterized by the set F×B. Let the unit
that corresponds to pair (ζ, β) denote by u(ζ, β). The corresponding kernels are given by (see [4, formula (3.5.2)])

L
u(ζ,β),u(ζ′,β′)(b) = 〈ζ, bζ′〉 + β∗b + bβ′ (26)

Comparing the kernels, we can conclude that the mapping F × B 3 (ζ, β) → u(ζ, β) ∈ UIΓ(F) is an (algebraic)
isomorphism of modules, if we choose ω = u(0, 0). Also, it is easy to see that u(ζ, β)γ = u(ζ, β + γ), so that
UIΓ(F)/ ∼= {[u(ζ, 0)] | ζ ∈ F} and therefore ind(IΓ(F)) � F, in algebraic sense.

Further, from (26) we easily get〈
u(ζ, β),u(ζ′, β′)

〉
= 〈ζ, ζ′〉 .

Thus ind(IΓ(F)) is isomorphic to F as Hilbert left-right module. Therefore, our definition of the index generalizes
that of Skeide [16].

Remark 6.3. It would be interesting to compute the index of the subspatial system exhibited in [5, Section 3], that is
not spatial.

Next Example is the Example of a product system without any central unit.

Example 6.4. In [4, Example 4.2.4], there is an example of a product system that does not contain any central unit.
In more details, letB = K(G) +CidG be the unitization of compact operators on an infinite-dimensional Hilbert space
G and let h ∈ B(G) be a self-adjoint operator. The Hilbert B − B modules Bt defined to coincide with B as right
Hilbert modules and with left multiplication b · xt = eithbe−ithxt form a product system (Bt)t≥0 with identification
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xs ⊗ yt = eithxse−ithyt. Such product system does not admit a central unit if and only if h < B, and it is generated by
the single unit 1t ≡ 1 and hence it is of type I, as it was shown in [4, Example 4.2.4].

Let ξt be an arbitrary continuous unit and let ξ′t = e−ithξt. Obviously, ξ′t is a uniformly continuous family. We
have

ξ′s+t = e−i(s+t)hξs ⊗ ξt = e−i(s+t)heithξse−ithξt = ξ′sξ
′

t.

It follows that ξ′t = etBξ for some bounded operator Bξ on G. Set Aξ = Bξ + ih and we obtain that any continuous unit
on (Bt)t≥0 has a form

ξt = eithet(Aξ−ih),

for some Aξ. Moreover, we find that

Aξ = lim
t→0+

[
eith
− 1
t

et(Aξ−ih) +
et(Aξ−ih)

− 1
t

]
= lim

t→0+

eithet(Aξ−ih)
− 1

t
∈ B,

because the last fraction belongs to B, and the limit converges uniformly, since exponentials are analytic functions.
Pick the unit ω choosing Aω = 0. Then ωt = 1. Noting that Lξ,η = idB(Aη − ih) + (A∗ξ + ih)idB, we see that〈

[ξ], [η]
〉

=
〈
ξ, η

〉
= 0 for every [ξ], [η] ∈ U/∼. Hence,U/∼ = {0}.

Remark 6.5. This example shows that product systems, even of type I cannot be classified by its index. Namely, for
h ∈ B it has a central unit, and for h < B it does not. Therefore, such product systems are not isomorphic in spite of
the fact that they have the same index.

In [5, Theorem 4.8] it was shown that the product system from previous Example is not subspatial, by proving
that the kernel of the unit 1 has no Christensen-Evans form. This is, up to our knowledge, the only example of
nonsubspatial product system. However for this system, Propositions 5.5, 5.7 and Theorem 5.6 remain valid. This
example is trivial, (despite twisted left action of B) in the sense that all Et are isomorphic (as right modules) to the
algebra B itself. On the other hand, the index is constructed to ”measure” how many dimensions the continuous
units can generate (in a certain sense) after taking a quotient by B.

It is, therefore, natural to ask if there are any product systems (of course that are not subspatial) for which
Propositions 5.5, 5.7 and Theorem 5.6 fail.

Remark 6.6. The other problem that arises from this example is what is actually, the trivial product system. Following
Skeide, it must be this example with h = 0 (as well as any example where Et � B - the algebra itself, and left and right
multiplication are canonical). However, then we have a problem how to define short exact sequences in the category of
product systems. Namely, injective morphisms have trivial kernel, i.e. isomorphic to {0} at each fiber. Such product
system has no continuous units, since it must be equal to 1 at time t = 0. Thus, we are forced to consider injective
morphisms modulo trivial systems. In this case, the previous Example cannot be seen from short exact sequences.
Therefore, in the absence of a suitable definition we cannot speak about exact functoriality of the index.
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